Транспирация у растений

Роль в физиологии растений

Такой биологический процесс обеспечивает нормальное функционирование систем растительного организма. Во многом благодаря транспирации созревают плоды и завязываются побеги. Этот процесс защищает растение от негативных внешних воздействий. Вместе с водой по тканям распространяются минеральные соединения. За счет транспирации снижается корневое натяжение и организм получает необходимые питательные вещества

В культивируемой зоне благодаря этому важному биологическому процессу распространяются удобрения, которые повышают урожайность

В оранжерейных и парниковых системах, где атмосферный воздух зачастую характеризуется высоким показателем влажности, транспирационный механизм замедляется. В таких условиях не редкость ожоги листьев при искусственном досвечивании или прямом воздействии агрессивного солнечного ультрафиолета. Транспирация связана с биологическими свойствами воды и ее ролью в жизнедеятельности растений. У некоторых культур это физиологическое явление служит цели насыщения жидкостью коллоидов протоплазмы, что обуславливает активное плодоношение и созревание.

Роль испаряемой в результате транспирации воды в биологических процессах развития растительных организмов:

Свойства воды Функциональное значение
Высокий показатель теплоемкости и способность к быстрому парообразованию. Поддержание термического баланса листьев, стебля, корневой системы, плодов и соцветий.
Значительное поверхностное натяжение. Облегчает циркуляцию влаги по капиллярам прожилков.
Оптимальные показатели текучести и плотности, обусловленные устойчивыми водородными связями. Определяют аномальные параметры питающей растение жидкости, делают ее структурной составляющей цитоплазмы.
Хорошее взаимодействие с разлагаемыми биополимерными веществами. Влияет на конформационное (структурное) строение биополимерных соединений, повышает активность растительных ферментов, вырабатывает устойчивость к неблагоприятным погодным условиям.
Диссоциация на фотоионы с высокой степенью биологической активности. Необходима для протекания в растении ключевых химических реакций – фотосинтеза, газообмена, гидролиза.
Способность поглощать инфракрасную часть радиационного излучения, относительная прозрачность и доступность для видимого спектра. Такие свойства воды, являющейся объектом транспирационного процесса, нужны водным растениям для поглощения фотосинтез-активного радиоизлучения (ФАР). Прозрачные клетки эпидермального слоя наземной флоры пропускают ФАР в структуру мезофилла и в определенной степени предотвращают его перегревание.
Высокие растворяющие характеристики. Имеют ключевое значение для питания корневой системы, транспорта кислорода и поглощения углекислого газа.

Для функционального состояния и планомерного развития растительного организма важна не только общая увлажненность, зависимая от интенсивности транспирационного процесса.

Большое значение имеют физико-химические характеристики воды:

  • концентрированность;
  • энергетический уровень;
  • показатель текучести;
  • реакционные способности.

Важна роль транспирации в прохождении фотосинтеза. Он лучше всего протекает в температурном диапазоне +20…+25°С, который обеспечивается биологической системой терморегуляции.

Интенсивность испарения

Интенсивностью испарения называют количество воды, которое испаряется с поверхности площадью 1 см2 за одну секунду.

Интенсивность испарения зависит от следующих факторов:

  • Температура поверхности. Чем выше температура, тем больше испарение. После дождя в Санкт-Петербурге улицы долгое время остаются влажными, а вот в Таиланде даже в сезон дождей все высыхает быстро — из-за высокой температуры. Но это только если в сезон дождей дождь умудрился прекратиться 🙂
  • Ветер. Чем больше скорость ветра, тем больше испарение. Фен для волос работает на этом принципе — по сути, он создает портативный ветер, который помогает высушить ваши волосы.
  • Дефицит влажности. Интенсивность испарения будет выше там, где больше дефицит влажности. Вряд ли многие из нас были Сахаре, но что это такое представляют все. В любой пустыне колоссально низкая влажность — из-за этого испарение идет интенсивнее.
  • Давление. Чем больше давление, тем меньше испарение. Мы уже выяснили, что не смотря на разницу между кипением и испарением, эти два процесса между собой связаны. Таким образом, температура кипения воды на вершине Эвереста равна 69 градусам Цельсия. В то время, как в нашей повседневной жизни она равна 100. Это возвращает нас к первому фактору — температуре.

Кажется, правильнее говорить «скорость испарения» вместо интенсивности? Или нет?

Скорость испарения — количество жидкости, которая испаряется со свободной поверхности в единицу времени.

Интенсивность испарения — количество жидкости, которая испаряется с единицы площади поверхности в единицу времени.

По сути, это два очень близких друг к другу понятия, поэтому разница будет лишь в величинах и единицах измерения, а суть процесса отражают обе формулировки.

Виды транспирации

Существует два вида транспирации – устьичная и кутикулярная. Для того чтобы разобраться в том, что представляет собой тот и другой виды, вспомним из уроков ботаники строение листа, так как именно этот орган растения является основным в процессе транспирации.

Итак, лист состоит из следующих тканей:

кожица (эпидермис) – внешняя покровная часть листа, представляющая собой один ряд клеток, плотно соединенный между собой для обеспечения защиты внутренних тканей от бактерий, механических повреждений и высыхания. Поверх этого слоя часто находится дополнительный защитный восковой налет, именуемый кутикулой;

основная ткань (мезофилл), которая находится внутри двух слоев эпидермиса (верхнего и нижнего);

жилки, по которым движется вода и растворенные в ней питательные вещества;

устьица – специальные замыкающие клетки и отверстие между ними, под которыми находится воздушная полость. Устьичные клетки способны закрываться и открываться в зависимости от того, достаточно ли в них воды. Именно через эти клетки в основном и осуществляется процесс испарения воды, а также газообмен.

Устьичная

Сначала вода начинает испаряться с поверхности основной ткани клеток. В результате эти клетки теряют влагу, водные мениски в капиллярах вгибаются вовнутрь, поверхностное натяжение увеличивается, и дальнейший процесс испарения воды затрудняется, что позволяет растению значительно экономить воду. Затем испарившаяся вода через устьичные щели выходит наружу. Пока устьица открыты, вода испаряется с листа с такой же скоростью, что и с водной поверхности, то есть диффузия через устьица очень высокая.

Дело в том, что при одной и той же площади вода быстрее испаряется через несколько небольших отверстий, расположенных на некотором расстоянии, чем через одно крупное. Даже после того как устьица закрываются наполовину, интенсивность транспирации остается почти такой же высокой. Но когда устьица закрываются, транспирация уменьшается в несколько раз.

Количество устьиц и их расположение у различных растений неодинаково, у одних видов они находятся только на внутренней стороне листа, у других – и сверху и снизу, однако, как видно из вышесказанного, не столько количество устьиц влияет на интенсивность испарения, сколько степень их открытости: если воды в клетке много, устьице открывается, когда возникает дефицит – происходит выпрямление замыкающих клеток, ширина устьичной щели уменьшается – и устьице закрывается.

Кутикулярная

Кутикула, так же как и устьица, обладает способностью реагировать на степень насыщенности листа водой. Находящиеся на поверхности листа волоски защищают лист от движений воздуха и солнечных лучей, что позволяет сократить потери воды. Когда устьица закрыты, кутикулярная транспирация особенно важна. Интенсивность этого вида транспирации зависит от толщины кутикулы (чем толще слой, тем меньше испарение). Большое значение имеет и возраст растения – на зрелых листьях водопотери составляют всего 10 % от всего процесса транспирации, в то время как на молодых могут доходить до половины. Впрочем, увеличение кутикулярной транспирации наблюдается и на слишком старых листьях, если их защитный слой повреждается от возраста, рассыхается или растрескивается.

Интенсивность транспирации

Интенсивность транспирации – это количество влаги, испаряемой с дм 2 растения за расчетную единицу времени. Данный параметр регулируется величиной раскрытия устьичных щелей, которая, в свою очередь, зависит от количества попадающего на растение света. Далее рассмотрим, как влияет свет на интенсивность транспирации.

Деформация клеток эпидермиса проходит под действием фотосинтеза, в процессе которого происходит преобразование крахмала в сахара.

  1. При свете у растений начинается процесс фотосинтеза. Давление в замыкающих клетках увеличивается, что дает возможность вытягивать воду из соседних клеток эпидермиса. Объем клеток увеличивается, устьица раскрываются.
  2. В вечернее и ночное время происходит преобразования сахаров в крахмал, в процессе которого клетки эпидермиса «откачивают» влагу из замыкающих клеток растения. Их объем уменьшается, устьица закрываются.

Помимо света на интенсивность транспирации оказывает влияние ветер и физические характеристики воздуха:

  1. Чем ниже уровень влажности атмосферного воздуха, тем быстрее происходит испарение воды, а значит и скорость влагообмена.
  2. При повышении температуры возрастает упругость водяных паров, которая приводит к снижению влажностных характеристик окружающей среды и увеличению объема испаряемой воды.
  3. Под влиянием ветра значительно увеличивается скорость испарение влаги, тем самым ускоряется перенос влажного воздуха с поверхности листа, вызывая усиление водообмена.

Для определения данного параметра не следует забывать и об уровне влажности почвы. Если ее недостаточно, значит и наблюдается ее недостаток в растении. Снижение объема влаги в растительном организме автоматически изменяет интенсивность испарения.

Что такое испарение

Во время испарения жидкое вещество постепенно переходит в паро- или газообразное состояние после того, как мельчайшие частицы (молекулы или атомы), двигаясь на скорости, достаточной для того, чтобы преодолеть силы сцепления между частицами, отрываются от поверхности.

Несмотря на то, что процесс испарения известен больше как переход жидкого вещества в пар, существует сухое испарение, когда при минусовой температуре лёд переходит из твёрдого состояния в парообразное, минуя жидкую фазу. Например, если выстиранное сырое бельё развесить сушиться на морозе, оно, замерзнув, становится очень жёстким, но через какое-то время, размягчившись, становится сухим.

Значение транспирации

Физиологический процесс передвижения и испарения воды растениями в биологии называют транспирацией. Механизм этого явления упрощенно выглядит так:

Упрощенный механизм движения воды в растении.

Под воздействием неодинакового осмотического давления вода с минеральными, органическими веществами по капиллярам растительной ткани (ксилемы) перемещается из почвы к наземным органам. Движение влаги на свету протекает непрерывно, обеспечивая рост, развитие, обмен веществ организма. Основной орган транспирации — лист. Через устьица он испаряет влагу, пропускает углекислый газ CO2, необходимый для фотосинтеза.

Через устьица растение теряет до 90% влаги.

Виды транспирации

Формы и пути передвижения влаги:

  • устьичная — испарение из открытых отверстий, составляет больше 90% потерь воды, интенсивность пропорциональна числу устьиц;
  • кутикулярная — расход воды через восковую кутикулу. Его доля 5–10%, толстая пленка препятствует транспирации;
  • лентикулярная — испарение из почек, чечевичек на коре ветвей, побегов. Роль в водном обмене невелика.

Испарение: что это за процесс

Процесс перехода из жидкого состояния в газообразное называется парообразованием. У этого процесса есть две разновидности: испарение и кипение.

Например, мы заварили себе горячий чай. Над чашкой мы точно увидим пар, так как вода только что поучаствовала в процессе кипения.

Подождите-ка, мы ведь только что сказали, что кипение и испарение — разные вещи. Это действительно так, при этом эти два процесса могут происходить параллельно.

  • Испарение — это превращение или переход жидкости в газ (пар) со свободной поверхности жидкости. Если поверхность жидкости открыта и с нее начинается переход вещества из жидкого состояния в газообразное, это будет называться испарением.
  • Кипение — процесс интенсивного парообразования, который происходит в жидкости при определенной температуре.

Испарение может происходить и без кипения, просто тогда оно не будет для нас заметно. Например, вода в озере испаряется, хотя мы этого и не замечаем. Кипение по сути своей — это интенсивное испарение, которое вызвали внешними условиями — доведя вещество до температуры кипения.

Физика объясняет испарение тем, что жидкость обычно несколько холоднее окружающего воздуха — из-за разницы температур происходит испарение. Как будто бы это фазовый переход, о котором мы говорим в статье об агрегатных состояниях .

Если нет каких-то внешних воздействий, испарение жидкостей происходит крайне медленно. Молекулы покидают жидкость из-за явления диффузии.

Интересно то, что направление тепловых потоков при испарении может идти в разной последовательности и комбинациях:

  • из глубины жидкости к поверхности, а затем в воздух;
  • только из жидкости к поверхности;
  • к поверхности из воды и газовой среды одновременно;
  • к площади поверхности только от воздуха.

Подытожим, чтобы не запутаться: в чем главная разница между испарением и кипением:

Испарение Кипение
При любой температуре, с поверхности жидкости При определенной температуре, во всем объеме жидкости

Проект «Что такое транспирация у растений»

Транспирация
– это испарение воды
листьями. Она, испаряясь,
выходит через устьица (маленькие поры
на поверхности листьев). Этот процесс
важен для выживания любого растительного
организма. Его скорость зависит от
температуры воздуха и солнечного света.
Испарение воды листьями
способствует ее движению внутри
растения, а также растворению минеральных
солей, необходимых для питания и
охлаждения.

Большая часть поглощаемой влаги выделяется в процессе транспирации. Сложно разделить процессы испарения и транспирации, поэтому данное явление зачастую называется «эвапотранспирацией». Название сочетает два понятия: первое происходит от латинского слова «evaporatio» (испарение), суть второго описана выше.

Транспирация происходит у всех растений. Ее скорость также зависит от их физических особенностей и условий окружающей среды. Поскольку влага выделяется, главным образом, через листья, то процесс транспирации у растений с крупными листьями выражен ярче, чем у тех, у которых они небольшие.

Такие
факторы, как влажность воздуха и
температура, также влияют на скорость
транспирации. Почва тоже должна быть
достаточно влажной. Благодаря этому
проекту вы сможете сопоставить то, что
видите, с процессом проникновения влаги
в ткани растительных организмов и ее
выделения путём испарения.

Этот
опыт по биологии поможет
вам определить, сколько влаги способно
поглотиться и выделиться через испарение
воды листьями за определённый
промежуток времени. Две трубки для
тестирования или два продолговатых
трубчатых контейнера на три четверти
заполняются водой. В одну из них помещается
стебель. Нужно следить за уровнем воды,
делая записи. Измерять ее уровень нужно
через определённый промежуток времени.
На основе полученных результатов
подготовьте таблицы и графики. Этот
проект поможет подтвердить или
опровергнуть идею о том, что
растения выделяют влагу во время процесса
под названием «транспирация», вследствие
которого происходит испарение.

Что нам понадобится:

  • 2 тестовые трубки;
  • пустая металлическая банка;
  • пластиковый пакет;
  • вода;
  • ручка;
  • линейка;
  • изолента;
  • секундомер или часы;
  • свежая ветка или небольшие веточки с листьями (не меньше 5 на каждой из них).

За
исключение ветки и тестовых трубок, все
материалы для данного проекта можно
приобрести в магазинах или по интернету.
2 тестовые трубки можно взять на время
в лаборатории школы или приобрести в
магазине. Большинство детских наборов
юного химика включает инструменты,
которые пригодны для этого проекта.

Ход эксперимента:

  1. Заполните две трубки водой приблизительно на три четверти. Поставьте их в пустую металлическую банку.
  2. Для того чтобы контролировать испарение, накройте одну тестовую трубку чистым целлофаном. Закрепите его при помощи изоленты.
  3. Проткните стеблем целлофан. Он должен находиться в прямом положении. Отверстие запечатайте при помощи изоленты.
  4. Линейкой измерьте количество воды в каждой трубке. Убедитесь, что верно измерили ее уровень. Держите ее прямо и проведите измерение от верхней границы до дна. Запишите полученные данные в таблицу.
Время Тест с веткой (A) Тест без ветки (B)
Начало
Через 15 мин.
Через 30 мин.
Через 45 мин.
Через 60 мин.
  1. Подождите 15 минут. Измерьте уровень воды в каждой трубке ещё раз. Запишите полученные данные в таблицу.
  2. Повторите шаг 4 ещё три раза. Каждый раз записывайте полученные результаты.
  3. Подождите 24 часа. Измерьте уровень воды в каждой трубке. Запишите результаты.
  4. Используя полученные данные, составьте гистограмму (в виде столбцов) или линейную диаграмму. На оси X обозначьте скорость транспирации (в минутах), а на оси Y – уровень воды (высота в мм).
  5. Подсчитайте скорость, выполняя следующие операции:

Тест с веткой:

Начальный уровень – Уровень через 24
часа = Разница уровня (A)

Тест без ветки:

Начальный уровень – Уровень через 24
часа = Разница (B)

Разница уровня воды благодаря транспирации:

Разница A — Разница B = Потеря воды через транспирацию

Начальное значение Значение через 24 часа Количество потерянной воды
Тест с веткой
Тест без ветки
  1. Чтобы подсчитать скорость транспирации и испарения в час, используйте следующие формулы: Количество потерянной воды ÷ 24 часа = ________ испарения воды/час.

Вывод:

Вследствие чего уровень воды в трубке со стеблем уменьшается? Происходит ли то же самое в трубке, заполненной водой, но без растения? Какова скорость транспирации по вашим подсчётам? Используя графики, сравните ее скорость со скоростью испарения. Что служило контрольной точкой для данного исследования?

Вариант 1

1. Опыт, изображенный на рисунке, демонстрирует процесс:

1) газообмена у растений
2) испарения воды растением
3) фотосинтеза
4) дыхания растений

2. Большая часть воды испаряется растением через:

1) стебель
2) корни
3)листья
4) цветки и плоды

3. Открывая устьичные щели, растение:

1) уменьшает испарение воды
2) увеличивает испарение воды
3) не изменяет интенсивность испарения воды
4) прекращает испарение воды

4. Растение меньше всего испаряет воду, когда:

1) холодно и ветрено
2) жарко и ветер слабый
3) день жаркий и безветренный
4) ночь холодная

5. Испарение идет быстрее, если в листе устьиц:

1) много и они закрыты
2) много и они открыты
3) мало и они открыты
4) мало и они закрыты

6. Листопад — это:

1) приспособление растений к недостатку влаги
2) процесс питания
3) весеннее явление в жизни растений
4) удаление полезных веществ

7. На рисунке стрелкой обозначен( о, а):

1) устьице
2) пробковый слой
3) пазуха листа
4) разделительный слой

8. Окрас листьев большинства растений меняется осенью из-за:

1) похолодания
2) образования хлорофилла
3) разрушения хлорофилла
4) фильтрации веществ

9. Листья вечнозеленых растений, в отличие от листопадных:

1) никогда не опадают
2) опадают не одновременно
3) не испаряют влагу
4) испаряют влагу только в летний период

Процессы передвижения воды

Как мы уже выяснили, транспирация – естественный физиологический процесс в растительном мире.
Главный ее орган – лист. Поскольку листьев у растений много, они образуют достаточно большую площадь для испарения. В результате водный потенциал уменьшается, а это сигнал для клеток листьев к поглощению воды из ксилемных жилок. По принципу падающего домино следом провоцируется движение воды из корней по ксилеме к листьям. Образуется нечто сродни верхнему конечному двигателю. И чем активнее транспирация, тем мощнее верхний «двигатель», и тем сильнее всасывающая сила «двигателя» нижнего – корневой системы.

Из стебля вода движется в листок, проходя по жилкам через черешок. По дороге жилки «разбегаются», число проводящих элементов становится меньше. Сами жилки превращаются в отдельные трахеиды, которые образуют очень густую сеть. Задерживают влагу в листе однослойный эпидермис с кутикулой на его поверхности. Превратившаяся в пар вода выходит сквозь устьица – специальные многочисленные отверстия микронных размеров, которые растение в состоянии расширять или сужать в зависимости от внешних условий.

Лист как орган транспирации

Основным органом транспирации является лист. Напомним некоторые особенности строения листа.

Сверху и снизу лист покрыт эпидермисом, состоящим из одного слоя тесно примыкающих друг к другу клеток. Наружные стенки этих клеток покрыты кутикулой. Входящие в ее состав вещества: кутин, воска – гидрофобны, что затрудняет испарение воды и позволяет эпидермису поддерживать водный гомеостаз листа. Толщина кутикулы зависит от вида, возраста растения, условий произрастания.

Длина устьичной щели 20–30, а ширина 4–6 мкм. Однако скорость диффузии водяного пара через устьица довольно большая, так как, согласно закону И. Стефана, испарение с малых поверхностей (площади устьичной щели) пропорционально не их площади, а диаметру. Поэтому хотя устьица занимают 1–2 % площади листа, транспирация достигает 50–70 % испарения с равной по величине водной поверхности и даже больше.

Вследствие этого при увеличении тургорного давления в замыкающих клетках тонкие части стенки растягиваются и выпячиваются, а толстые, обращенные к щели, становятся вогнутыми. При этом устьичная щель расширяется, т.е. устьице открывается. Кроме двух замыкающих клеток движения устьиц зависят еще и от соседних с ними клеток эпидермиса, называемых примыкающими.

Несколько иначе происходит зияние устьиц у зла­ков. Замыкающие клетки их устьиц представлены удли­ненными и параллельными друг к другу. Средняя их часть имеет толстые оболоч­ки, а вздутые концы неж­ные, тонкие. При насыще­нии диаметр концевых вздутий увеличивается, что вызывает открывание устьиц. На рисунке представлена структура устьиц у двудольных (А) и однодольных растений (Б): 1 – устьичная щель, 2 – ядро, 3 – хлоропласты, 4 –толстая клеточная стенка, 5 – замыкающие клетки устьиц 6 – побочные клетки, 7 – клетки эпидермиса с многочисленными порами.

Между нижним и верхним эпидермисом находится мезофилл с системой межклетников и проводящими пучками. Межклетники увеличивают внутреннюю испаряющую поверхность листа в 7–10 раз и соединяются с внешней средой через устьица. Количество проводящих пучков определяет скорость поступления воды в листовую пластинку.

Растения испаряют значительную часть поглощаемой воды. В испарении принимают участие три структуры:

1. Устьица – поры, через которые диффундирует вода, испаряющаяся с поверхности клеток (около 90 % от всей потерянной воды при открытых устьицах).

2. Кутикула – восковой слой, покрывающий эпидермис листьев и стеблей; через нее проходит вода, испаряющаяся с наружных оболочек клеток эпидермиса (около 10 %).

3. Чечевички, почки – обычно их роль в испарении воды очень мала, но у листопадных деревьев после сбрасывания листьев через них теряется основная масса воды.

Следовательно, основную роль в испарении воды играют следующие виды транспирации:

  • устьичная (испарение воды через устьица);
  • кутикулярная (испарение воды с поверхности листа, покрытого кутикулой);
  • перидермальная (через чечевички, стебель, почки).

Как правило, транспирацию подразделяют на устьичную и внеустьичную (кутикулярная, перидермальная).

В процессе устьичной транспирации выделяют следующие фазы: 1) испарение воды с поверхности влажных стенок паренхимных клеток мезофилла в межклетники; 2) диффузия водяного пара к устьичным щелям и выход через них в атмосферу; 3) движение водяного пара от поверхности листа.

Лист как орган транспирации

Что такое транспирация мы разобрали. Теперь следует понять, какую роль в данном механизме играет лист.

Благодаря большой площади испарения, главными диффундирующими участками растения являются листья. Процесс испарения влаги начинается с нижней части листа через раскрытые устья, через которые и осуществляется обмен кислородом и углекислым газом между растением и окружающим воздухом.

Механизм раскрытия устьиц заключается в следующем:

  1. По окружности устий расположены замыкающие клетки.
  2. При увеличении объема они растягивают отверстия в эпидермисе, увеличивая раскрытие устьиц.

Обратный процесс происходит при уменьшении объема замыкающих клеток, стенки которых перестают воздействовать на устьичные щели.

Транспирация, ее механизм и роль в жизни растений. Механизм гуттации.

Транспирация – это физиологический процесс испарения воды растениями. Основным органом транспирации является лист.

Принято считать, что устьица – это щель между двумя замыкающими клетками. Но кроме двух замыкающих клеток в состав устьичного аппарата входят и примыкающие к ним эпидермальные клетки; они также принимают участие в устьичных движениях

Между нижней и верхней эпидермой находится мезофилл с системой межклетников и проводящими пучками. Межклетники увеличивают внутреннюю испаряющую поверхность листа в 7–10 раз и связываются с окружающей средой через устьица.

Установлено, что растения испаряют значительную часть поглощаемой воды. В испарении принимают участие три структуры:

1. Устьицы – поры, через которые диффундирует вода, испаряющаяся с поверхности клеток (около 90 % от всей потерянной воды при открытых устьицах).

2. Кутикула – восковой слой, покрывающий эпидермис листьев и стеблей; через нее проходит вода, испаряющаяся с наружных оболочек клеток эпидермиса (около 10 %).

3. Чечевички, почки – обычно их роль в испарении воды очень мала, но у листопадных деревьев после сбрасывания листьев через них теряется основная масса воды.

Следовательно, основную роль в испарении воды играют следующие виды транспирации:

– устьичная (испарение воды через устьица);

– кутикулярная (испарение воды с поверхности листа, покрытого кутикулой)

– перидермальная (через чечевички, стебель, почки).

Как правило, транспирацию подразделяют на устьичную и внеустьичную (кутикулярная, перидермальная).

Большая часть транспирационной воды испаряется с влажной поверхности клеток мезофилла в межклетники, а потом водяной пар через устьица диффундирует в окружающую среду

Поэтому, при устьичной транспирации выделяют такие фазы:

– испарение воды с поверхности влажных клеточных оболочек;

– диффузия водяного пара через устьица;

– движение водяного пара с поверхности листа.

Интенсивность или скорость транспирации определяется количеством граммов воды, испаренной с 1 м 2 листовой поверхности за 1 час (г Н2О/м 2 ·ч).

Редко количество потерянной воды относят не к единице поверхности, а к единице сухой массы растения. Последнее не совсем верно, поскольку при одинаковой массе органы растений могут иметь разную поверхность.

Обычно скорость транспирации колеблется в интервале от 15 до 250 г/м 2 ·ч, а ночью снижается до 7–20 г/м 2 ·ч. Если провести приблизительные расчеты, то можно показать, что 1 га пашни за счет только транспирации теряет 100 т воды за день.

Кутикулярная транспирация для молодых листьев составляет 1/3– 1/2 общей интенсивности испарения, у взрослых листьев в 10 раз слабее. У суккулентов (например, кактусов) кутикулярная транспирация вообще отсутствует. У сахарного тростника ее интенсивность почти равна устьичной, так как некоторые из клеток верхней эпидермы имеют тонкие оболочки. Транспирация через чечевички, стебель, почки (перидермальная) по интенсивности небольшая.

Кроме интенсивности транспирация характеризуется транспирационным коэффициентом. Транспирационный коэффициент – это количество воды, которое затрачивается для накопления одного грамма сухого вещества. Чтобы расчитать эту величину необходимо определить интенсивность транспирации и увеличение массы вещества растения и первую величину поделить на вторую. Например, транспирационный коэфициент 300, это означает, что растение должно испарить 300 г. воды, чтобы ее сухая масса увеличилась на 1г.

Величина транспирационного коэффициента варьирует у разных растений от 100 до 1 000 г Н2О/г сухого вещества (чаще 300–500). Средняя величина этого коэффициента у С3-растений – 600, С4 – 300, растений типа толстянковых – 33–240 г Н2О/г сухого вещества.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector